Alternator question., Not Charging. |
|
Porsche, and the Porsche crest are registered trademarks of Dr. Ing. h.c. F. Porsche AG.
This site is not affiliated with Porsche in any way. Its only purpose is to provide an online forum for car enthusiasts. All other trademarks are property of their respective owners. |
|
Alternator question., Not Charging. |
Olympic 914 |
Mar 25 2018, 05:05 PM
Post
#1
|
Group: Members Posts: 1,710 Joined: 7-July 11 From: Pittsburgh PA Member No.: 13,287 Region Association: North East States |
Took the car out for a drive today, planning on going to dinner. everything is working as it should. getting on the PA turnpike and I had to accelerate briskly to get into traffic, and a moment later I noticed that the RED alternator light had come on. Pulled of at a wide spot to check the belt and wires and shut it off. Not checking the belt with it running. Belt good, plug tight, tapped the VR a couple times for good measure and started it back up. Light still on and now my Autometer AFR gauge just had bars. I know that is because it doesn't turn on until the voltage is +13v So not charging.
Now I am on a limited access highway with the next exit `12-15 miles away. Good thing had the battery fully charged on the tender before I left the house. So I made it to the next exit, turned around and headed back home for a total of 35 miles on battery only. Whew. But that shot dinner..... Replace the VR with another I had that previously tested good. still no charging. checked the plug on the relay plate again. looks good. I have not yet checked the wire connections at the alternator, possibly a wire vibrated loose during the brisk acceleration. Now the question I read to test the VR to short between D+ and DF and if the alternator is good voltage at the battery will go to alternator maximum of about 15-16V So do I REMOVE the VR for this test? and jump between the D+ and DF at the relay plate. OR Leave the VR in place and short between those pins? |
Olympic 914 |
Apr 19 2018, 11:55 AM
Post
#2
|
Group: Members Posts: 1,710 Joined: 7-July 11 From: Pittsburgh PA Member No.: 13,287 Region Association: North East States |
There is also this.
I performed the tests below the red line. There are four connections to the alternator itself. D+, DF,D-, and B+. If you look at the Haynes book, what is not readily apparent, but is true nevertheless, is that the set of diodes that connect to the D+ terminal are a duplicate set (except for lower curent rating) to the ones for the B+ terminal, which is the actual high current output of the alternator. The D+ terminal is therefore a duplicate output terminal of the alternator, with less current capability. The lower set of diodes on current track 80 is common to both the D+ and B+ functions, and forms the ground return for both the B+ and D+ outputs. The DF or "Dynamo Field" terminal connects to the ungrounded end of the alternator field winding, and is an input to the alternator. The current supplied to the DF terminal determines the strength of the magnetic field that penetrates the output windings, and thus controls the alternator's output. The D- terminal is connected to the alternator frame, and is the ground return for the voltage regulator. The other end of the field winding is also connected to ground at this point. The Bosch alternator is incapable of self-excitation, or "boot-strapping" itself to an operating condition. Older DC generators and some U.S. alternators have residual magnetism retained in the core, or some other scheme to get enough field current to get themselves up and running. The Bosch alternator uses a different scheme. The charge warning lamp is connected between the ignition switch and the D+ terminal. When the car is first started, there is no output from the alternator at either the B+ or D+ terminals. The voltage regulator, sensing no output, is attempting to command maximum field current... it effectively shorts the D+ and DF terminals together. This places the D+ terminal close to ground potential, because the resistance of the field winding is not large. This means that there is +12 volts on one side of the charge warning lamp, and the other side of the lamp is grounded through the alternator field winding. Current thus flows through the lamp, lighting it. This same current, however, also flows through the alternator field winding, producing a magnetic field. This magnetic field is what the alternator needs to start up, and if everything is working correctly, that's exactly what happens. The alternator now begins to develop identical voltages at the D+ and B+ terminals. The D+ terminal is connected to one end of the charge warning lamp, while the other end of the lamp is connected to the battery via the ignition switch. Since the B+ terminal is hard-wired to the battery, and since both the D+ and B+ diodes are fed from the same set of windings in the alternator, no voltage difference can exist between these two points. The warning lamp goes out. The voltage regulator "watches" the voltage at the D+ point, which should be the same as that applied to the battery. It now changes the short between the D+ and DF terminals into a variable resistance. This effectively controls the field current (whose source is now the output from the D+ terminal, and not the charge warning lamp) and thus regulates the output voltage of the alternator. Fault conditions: When something happens to the charging system that causes it's output to be insufficient, the result is almost always a net voltage difference across the charge warning lamp, causing it to light. For example: Suppose an output (B+) diode opens. The efficiency of the main output is now considerably reduced. The voltage regulator does not know this, however, because it is looking at the D+ point. So, the B+ output is now lower than the D+ point and the warning lamp lights. Let's say that one of the D+ diodes failed: The D+ output is now reduced considerably. This means that the voltage regulator will have difficulty in maintaining sufficient field current for normal output. The field regulating resistance is low or short (between D+ and DF terminals) and the resulting load on the crippled D+ system drops it's voltage well below the battery voltage. Therefore, there is a net voltage difference across the charge warning lamp and it lights. The bottom line is that in order for your light to light, you must have a net imbalance in the outputs of the D+ and B+ sections of the alternator (or between the D+ output and the battery voltage, which amounts to the same thing). ________________________________________________________________________________ To trouble-shoot the problem, you need to check the various sections independently. Thus the first check: Connect +12 volts from the battery to the DF terminal on the relay board. This is the maximum field current situation, and should result in maximum output of the alternator. Note that this checks the B+ diodes, the alternator windings, and the common diodes. It does NOT check the D+ diodes. To check the D+ portion of the system, it is necessary to find out if the D+ output can produce enough current to drive the alternator to full output. To do this, short the D+ and DF terminals on the relay board. This will provide the maximum field current to the alternator that the alternator ITSELF can supply (not the battery, as in the earlier check) and so checks the remainder of the circuitry. If this test puts the light out, then the alternator is good, and the trouble is elsewhere. If it doesn't, then the alternator is almost certainly bad, with one other possibility: In the Bosch system, the size of the charge warning lamp bulb is critical. Too low a wattage bulb will not supply enough field current for "bootstrap" operation to be reliable. The Bosch book that I have states that the lamps must be at least 2 watts for 12 volt systems. If you have replaced your charge warning lamp recently, then too small a lamp may be your culprit. |
Lo-Fi Version | Time is now: 8th January 2025 - 12:27 AM |
All rights reserved 914World.com © since 2002 |
914World.com is the fastest growing online 914 community! We have it all, classifieds, events, forums, vendors, parts, autocross, racing, technical articles, events calendar, newsletter, restoration, gallery, archives, history and more for your Porsche 914 ... |